Bagaimana cara kerja Baterai?

image

Secara sederhana, baterai adalah alat yang menghasilkan listrik dari reaksi kimia. Atau dapat dikatakan, baterai adalah alat yang mengubah energi kimia menjadi energi listrik.

Secara sederhana, baterai adalah alat yang menghasilkan listrik dari reaksi kimia. Atau dapat dikatakan, baterai adalah alat yang mengubah energi kimia menjadi energi listrik.

Baterai merupakan alat yang mengubah energi listrik menjadi energi kimia saat pengisian dan mengubah energi kimia menjadi energi listrik saat digunakan. Baterai memiliki dua kutub yaitu kutub pertama yang bertanda positif (+) dan kutub kedua yang bertanda negatif (-).

Di dalam baterai ada beberapa sel listrik, dan sel listrik tersebut menjadi tempat menyimpan energi listrik dalam bentuk energi kimia. Elektroda-elektroda yang tersimpan di dalam baterai ada yang negatif ada pula yang positif. Elektroda negatif disebut katoda, yang memiliki fungsi sebagai pemberi elektron. Sedangkan elektroda positif, disebut anoda yang berfungsi sebagai penerima elektron.

Ada aliran arus #listrik yang mengalir dari kutub positif (anoda) ke kutub negatif (katoda). Sedangkan elektron akan mengalir dari kutub negatif menuju kutub positif.

Di dalam baterai sendiri, terjadi sebuah reaksi kimia yang menghasilkan elektron. Kecepatan dari proses ini (elektron, sebagai hasil dari elektrokimia) mengontrol seberapa banyak elektron dapat mengalir diantara kedua kutub. Elektron mengalir dari baterai ke kabel dan tentunya bergerak dari kutun negatif ke lutub positif tempat dimana reaksi kimia tersebutr sedang berlangsung.

Dan inilah alasan mengapa baterai bisa bertahan selama satu tahun dan masih memiliki sedikit power, selama tidak terjadi reaksi kimia atau selama kita tidak menghubungkannya dengan kabel atau sejenis Load lain. Seketika kita menghubungkannya dengan kabel maka reaksi kimia pun dimulai.

Lalu bagaimana komponen-komponen tersebut bisa menghasilkan aliran listrik? Begini, anoda dan katoda terbuat dari bahan yang dapat bereaksi dengan bahan elektrolitnya. Saat anoda dan elektrolit bereaksi, terbentuklah satu senyawa baru yang menyisakan satu elektron. Sebaliknya, reaksi antara katoda dan elektrolit membutuhkan satu elektron.

Jadilah sisa elektron dari reaksi anoda dan elektrolit tadi dikirimkan ke katoda agar katoda dapat bereaksi dengan elektrolit. Perpindahan elektron inilah yang dapat menimbulkan aliran listrik dari sebuah baterai.

Sumber:

Sebuah baterai terdapat sebuah tanda positif (+) di satu sisi dan tanda negatif (-) di sisi lainnya. Ya, dalam sebuah baterai terdapat kutub positif yang biasa disebut katoda, dan juga kutub negatif yang biasa disebut anoda. Kedua kutub yang biasa disebut elektroda ini dipisahkan oleh sebuah zat yang dapat mengalirkan listrik dari anoda ke katoda. Zat ini disebut juga elektrolit. Wah banyak juga ya istilahnya.

Komponen-komponen tersebut bisa menghasilkan aliran listrik dengan adanya anoda dan katoda terbuat dari bahan yang dapat bereaksi dengan bahan elektrolitnya. Saat anoda dan elektrolit bereaksi, terbentuklah satu senyawa baru yang menyisakan satu elektron. Sebaliknya, reaksi antara katoda dan elektrolit membutuhkan satu elektron. Jadilah sisa elektron dari reaksi anoda dan elektrolit tadi dikirimkan ke katoda agar katoda dapat bereaksi dengan elektrolit. Perpindahan elektron inilah yang dapat menimbulkan aliran listrik dari sebuah baterai.

Sumber:
sains.me

Didalam Baterai sekunder terdapat elektroda negatif atau anoda yang berkaitan dengan reaksi oksidasi setengah sel yang melepaskan elektron kedalam sirkuit eksternal. Dan elektroda positif atau katoda dimana terjadi reaksi setengah sel, yaitu reaksi reduksi yang menerima elektron dari sirkuit luar sehingga reaksi kimia reduksi terjadi pada katoda. Material aktif yang umumnya berbasiskan material keramik yang mampu bereaksi secara kimia menghasilkan aliran arus listrik selama baterai mengalami proses charging dan discharging. Reaksi kimia dalam baterai sekunder bersifat reversible . Kemampuan kapasitas energi yang tersimpan dalam baterai lithiuam tergantung pada beberapa banyak ion lithium yang dapat disimpan dalam struktur bahan elektrodanya dan beberapa banyak yang dapat digerakkan dalam proses charging dan discharging , karena jumlah arus elektron yang tersimpan dan tersalurkan sebanding dengan jumlah ion lithium yang bergerak.

Pada proses charging, material katoda akan terionisasi, menghasilkan ion lithium bermuatan positif dan bermigrasi kedalam elektrolit menuju komponen anoda, sementara elektron yang diberikan akan dilepaskan bergerak melalui rangkaian luar menuju anoda. Ion lithium ini akan masuk kedalam anoda melalui mekanisme interkalasi.

image

Pada proses discharging, material anoda akan terionisasi, menghasilkan ion lithium bermuatan positif dan bermigrasi kedalam elektrolit menuju komponen katoda, sementara elektron yang diberikan akan dilepaskan bergerak melalui rangkaian luar menuju katoda. Ion lithium ini akan masuk kedalam katoda melalui mekanisme interkalasi ( David, 1994)

image

Reaksi yang terjadi pada sistem LIBs tersebut merupakan reaksi reduksi dan oksidasi. Reaksi reduksi adalah reaksi penambahan elektron oleh suatu molekul atau atom sedangkan reaksi oksidasi adalah reaksi pelepasan elektron

pada suatu molekul atau atom. Sebagai contoh,misalkan kita memakai LiCoO2 sebagai katoda, Li2C6 sebagai anodanya. Maka reaksi yang terjadi adalah:

Charge

Pada katoda : Li (1-x) CoO2 + xLi+ + xe- LiCoO2

Discharge

Charge

Pada anoda : LiC6 xLi+ + xe- + C6

Discharge

Charge

Reaksi total : LiC6 + Li (1-x) CoO2 LixC6 + LiCoO2

Discharge

Suatu material elektrokimia dapat berfungsi baik sebagai elektroda anoda maupun katoda bergantung pada pemilihan material ( material selection) yang akan menentukan karakteristik perbedaan nilai tegangan kerja ( working voltage) dari kedua material yang dipilih. Potensial tegangan yang terbentuk antara elektroda anoda dan katoda bergantung dari reaksi kimia reduksi-oksidasi dari bahan elektroda yang dipilih. Beberapa material dapat berfungsi sebagai anoda terhadap material katoda lainnya jika memiliki potensial Li+ yang lebih rendah. Contoh, grafit adalah anoda dalam sistem elektroda LiMn2O4, namun akan berfungsi sebagai katoda saat dipasangkan dengan elektroda Li metal sebagai anodanya ( Yan-jing, Hao. 2005).

1 Like