Apakah yang dimaksud dengan Analisa termal diferensial (Differential Thermal Analysis)?

Analisa termal diferensial (Diffenetial Therma Analysis) adalah teknik dimana suhu dari sample dibandingkan dengan material referen inert selama perubahan suhu terprogram. Suhu sample dan referen akan sama apabila tidak terjadi perubahan, namun pada saat terjadinya beberapa peristiwa termal, seperti pelelehan, dekomposisi atau perubahan struktur kristal pada

sample, suhu dari sample dapat berada di bawah (apabila perubahannya bersifat endotermik) ataupun di atas ( apabila perubahan bersifat eksotermik) suhu referen.

Alasan penggunaan sample dan referen secara bersamaan diperlihatkan pada Gambar Metode DTA. Pada Gambar (a) sampel mengalami pemanasan pada laju konstan dan suhunya, Ts dimonitor secara kontinu menggunakan termokopel. Suhu dari sample sebagai fungsi dari waktu diperlihatkan pada Gambar 3 (b); plotnya berupa suatu garis linear hingga suatu peristiwa endotermik terjadi pada sampel, misalnya titik leleh Tc.

Suhu sample konstan pada Tc sampai peristiwa pelehan berlangsung sempurna; kemudian suhunya meningkat dengan tajam untuk menyesuaikan dengan suhu program. Peristiwa termal pada sample yang berlangsung pada Tc teramati sebagai deviasi yang agak luas dari slop baseline (b).

Plot seperti ini tidak sensitif pada efek pemanasan yang kecil karena waktu yang diperlukan bagi proses sejenis ini bisa sangat singkat dan menghasilkan deviasi yang juga kecil. Lebih jauh lagi, beragam variasi tidak diharapkan dari baseline, yang bisa disebabkan oleh fluktuasi laju pemanasan, akan menyerupai peristiwa termal.

Karena ketidaksensitivannya, teknik ini memiliki aplikasi yang terbatas; penggunaan utama pada awalnya adalah pada ‘metode kurva pendinginan’ yang digunakan pada penentuan diagram fasa; dimana suhu sample direkam pada proses pendinginan dan bukan pemanasan, karena efek panas yang diasosiasikan dengan solidifikasi dan kristalisasi biasanya cukup besar sehingga dapat dideteksi dengan metode ini.


Gambar Metode DTA

Pada Gambar © diperlihatkan pengaturan yang dugunakan pada DTA. Sampel dan referen ditempatkan bersebelahan dalam heating block yang dipanaskan ataupun didinginkan pada laju konstan; termokopel identik ditempatkan pada keduanya dan dikoneksikan. Ketika sampel dan referen berada pada suhu yang sama, output bersih dari pasangan termokopel ini akan sama dengan nol. Pada saat suatu peristiwa termal berlangsung pada sampel, perbedaan suhu, ΔT, timbul antara keduanya yang kemudian terdeteksi dari selisih tegangan dari kedua termokopel. Termokopel ketiga (tidak diperlihatkan pada gambar) digunakan untuk memonitor suhu heating block dan hasilnya diperlihatkan sebagai ΔT versus suhu (Gambar d).

Baseline horizontal, menunjukkan ΔT=0, sedangkan penyimpangan dari baseline akan berupa puncak yang tajam sebagai akibat dari berlangsungnya peristiwa termal pada sampel. Suhu puncak yang muncul dapat ditentukan dari suhu dimana deviasi mulai timbul, T1,ataupun pada suhu puncak, T2. Penggunaan T1 mungkin saja lebih tepat, namun seringkali kurang jelas kapan puncak bermula, dan karenanya lebih umum digunakan T2. Ukuran dari puncak dapat diperbesar sehingga peristiwa termal dengan perubahan entalpi yang kecil dapat terdeteksi. Gambar (d) sangat mudah diolah, sehingga cara ini digunakan sebagai cara yang lebih sensitif dan akurat untuk memperoleh data dibandingkan Gambar (b) dan dipakai pada metode umum mempresentasikan hasil DTA.

Instrumen DTA komersial dapat digunakan pada range suhu -190 sampai 16000C. Ukuran sampel biasanya kecil, beberapa miligram, sehingga mengurangi pemunculan masalah akibat gradien termal dalam sampel yang dapat mengurangi sensitivitas dan akurasi. Laju pemanasan dan pendinginan biasanya berada pada range 1 sampai 500C / menit. Pada penggunaan laju yang lebih lambat, sensitivitas akan berkurang karena ΔT bagi peristiwa termal tertentu akan menurun dengan menurunnya laju pemanasan.

Sel DTA biasanya didisain untuk memaksimumkan sensitivitasnya terhadap perubahan termal, namun hal ini sering berakibat pada kehilangan respon kalorimetrik; sehingga tinggi puncak hanya berhubungan dengan besar perubahan entalpi secara kualitatif saja. Dimungkinkan untuk mengkalibrasi peralatan DTA sehingga harga entalpi yang kuantitatif dapat diperoleh, namun kalibrasi ini cukup rumit. Apabila diperlukan data kalorimetrik, maka lebih mudah untuk memakai DSC sebagai komplementer.